
Tracing embedded
heterogeneous systems
P R O G R E S S R E P O R T M E E T I N G , D E C E M B E R 2 0 1 5

T H O M A S B E R T A U L D

D I R E C T E D B Y M I C H E L D A G E N A I S

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 1

Presentation plan

1. Introduction

2. The Parallella board

3. BareCTF

4. The synchronization process

5. Results

6. Future work

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 2

Introduction -
Why tracing heterogeneous embedded systems ?

 Systems designed for specific needs/tasks

 Often used for real-time applications like signal processing

 Can be used anywhere

 Power-efficient

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 3

Introduction -
Goals

 Heterogeneous systems imply different kinds of processors
 Not all of them are directly tracable

 DSPs and generic calculation processors are not meant to run any OS (bare-metal)

 How do the different processing units interact ?
 Use-case 1 : a classical CPU sends work to a DSP and retrieves the results

 Use-case 2 : some classical processor monitors a bare-metal processor activity

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 4

The Parallella board -
Specifications

 ARM Cortex A9 running Linux

 1 GB DDR3

 Epiphany chip :
 16 processors mesh (eCores)

 32-bits RISC CPU

 512KB distributed on-chip shared memory (32KB
per CPU)

 Superscalar architecture (internal pipeline)

 2 32-bits events counters

 32MB external shared memory

 http://parallella.org/

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 5

http://parallella.org/

The Parallella board -
Benefits and drawbacks

 Cheap (~100$ per board)

 Open-source design

 Can be used inside a cluster

 Power-efficient

 16 multi-purposes CPU…

 … but no optimization for signal processing

 Only 32KB of local memory per core

 One way interrupt mechanism

 Only partial support of nested interrupts

 LibC not fully integrated (no malloc…)

 Lack of community support and
documentation

 Hard to debug

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 6

The Parallella board -
Benchmarks

 eCore -> EDRAM 1 byte read: ~540 cycles

 eCore -> EDRAM 1 byte write: 17 cycles

 Interrupt handling: ~300 000 cycles

 Internal synchronization between 16 eCores: ~200 cycles

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 7

BareCTF -
Tracing bare-metal systems

 Python tool created by Philippe Proulx (EfficiOS)

 Targets bare-metal systems

 Generates CTF traces

 Easy-to-use (configuration by YAML files)

 Lightweight

 https://github.com/efficios/barectf

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 8

https://github.com/efficios/barectf

The synchronization process -
Facts and goal

 We can use LTTng to trace the ARM side of the Parallella

 We can use BareCTF to trace the Epiphany side of the Parallella

 A hardware barrier can be used for internal synchronization

 All eCores share the same clock rate

 How do we synchronize and correlate ARM and Epiphany traces ?

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 9

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 10

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

0. Periodically check the monitored core’s
cycle counter

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 11

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

1.1 Send sync signal

1.2 Poll interrupt_ack flag

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 12

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

2. Set interrupt_ack flag

1.2 Poll interrupt_ack flag

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 13

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

3.1 Enter sync routine

3.2 Poll sync_ack flag

3.3 Internal synchronization

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 14

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

3.1 Enter sync routine

3.2 Poll sync_ack flag

4.2 Idle

4.1 Set sync_ack flag

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 15

ARM

Epiphany

The synchronization process -
Description

ARM

Shared
Memory

Epiphany

4.2 Idle

5. Send end signal

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 16

ARM

Epiphany

Results -
General

 Synchronization is working
 Takes an average 0,1 ms to complete on host

 Partial integration with bareCTF

 It is possible to allow nested interrupts of the same kind
 Need to overwrite a system register

 Not very safe

 Another method using only one interruption has been tested
 Average cycles taken by first method: ~300 000 (without first interruption)

 Average cycles taken by second method: ~a few thousand

 Drawback: poll shared memory instead of idle and less precise synchronization

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 17

Results -
Limitations

 BareCTF + synchronization code on a core

 One core is periodically checked

 Need to use shared memory

 Huge overhead due to interruptions

 Internal synchronization can’t be shared by different workgroups

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 18

Future work

 Try the DMA engine of the Parallella

 Create a TraceCompass view

 Finalize bareCTF integration

 See how this method can be integrated to other devices

 Estimate the optimal synchronization rate

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 19

Future work -
The TI board

 4 ARM Cortex A15

 8 C66x DSPs

 6 MB shared memory

 Cache system

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 20

Thank you for your attention !
Contact : thomas.bertauld@gmail.com

December 10th 2015 TRACING EMBEDDED HETEROGENEOUS SYSTEMS 21

mailto:thomas.bertauld@gmail.com

